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Electronic health record (EHR)

EHR: Document for medical billing
1. Limited labeled data: 50 to 1000
2. Binary outcome (e.g. disease status.)
3. Many predictors: billing codes, demographics,

disease histories, co-morbid conditions, laboratory
test results, prescription codes, and concepts
extracted from doctors’ notes.

EHR phenotyping
High-dimensional inference for binary outcome labeling.
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High-dimensional Logistic Regression

For 1 ≤ i ≤ n, consider the model for yi ∈ {0,1},Xi· ∈ Rp

P(yi = 1|Xi·) = h(X ᵀ
i·β), h(z) = exp(z)/[1 + exp(z)]

I p � n, β is sparse
I Case probability

P(yi = 1|Xi· = xnew) ≡ h (xᵀ
newβ)

EHR phenotyping

H0 : h(xᵀ
newβ) < 1/2.
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Existing Bias Correction

The penalized log-likelihood estimator β̂

β̂ = arg min
β

`(β) + λ‖β‖1,

where `(β) =
∑n

i=1 [log (1 + exp (X ᵀ
i·β))− yi · (X ᵀ

i·β)] .

Debiasing Inference
I βj in linear models (Zhang & Zhang ’14, Javanmard & Montanari ’14)

I βj in GLM (van de Geer, Bühlmann, Ritov & Dezeure ’14)
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Bias Correction Intuition

β̂j + ûᵀ1
n

n∑
i=1

Xi·(yi − h(X ᵀ
i· β̂)) (1)

1
n

n∑
i=1

Xi·(yi − h(X ᵀ
i· β̂)) ≈ Ĥ(β̂)(β − β̂) +

1
n

n∑
i=1

εiXi·,

with Ĥ(β) = 1
n

∑n
i=1 h(X ᵀ

i·β)(1− h(X ᵀ
i·β))Xi·X

ᵀ
i· .

ûᵀ1
n

n∑
i=1

Xi·(yi − h(X ᵀ
i· β̂)) ≈ ûᵀĤ(β̂)(β − β̂)

≈ eᵀ
j (β − β̂).
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Challenge

For βj = eᵀ
j β,

Ĥ(β̂)û ≈ ej

I Sparse [EĤ(β)]−1ej (van de Geer et.al., 14)

For xᵀ
newβ, we construct û such that

Ĥ(β̂)û ≈ xnew.

Challenge

[Ĥ(β̂)]−1xnew can be DENSE!

Zijian Guo High-dim Logistic Inference 6/21



Our Proposed Method
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LIVE estimator

Existing

β̂j + ûᵀ1
n

n∑
i=1

Xi·(yi − h(X ᵀ
i· β̂))

LInearization and Variance Enhancement

x̂ᵀ
newβ = xᵀ

newβ̂+ûᵀ1
n

n∑
i=1

[h(X ᵀ
i· β̂)(1− h(X ᵀ

i· β̂))]−1︸ ︷︷ ︸
weight for i−th observation

Xi·(yi − h(X ᵀ
i· β̂)).
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Linearization: Logistic to Linear

1
n

n∑
i=1

[h(X ᵀ
i· β̂)(1− h(X ᵀ

i· β̂))]−1Xi·(yi − h(X ᵀ
i· β̂))

≈1
n

n∑
i=1

Xi·X
ᵀ
i· (β − β̂) +

1
n

n∑
i=1

[h(X ᵀ
i· β̂)(1− h(X ᵀ

i· β̂))]−1εiXi·

x̂ᵀ
newβ − xᵀ

newβ is decomposed as

(Σ̂û − xnew)ᵀ(β − β̂) + ûᵀ1
n

n∑
i=1

[h(X ᵀ
i· β̂)(1− h(X ᵀ

i· β̂))]−1εiXi·.
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Variance Enhancement: Uniform for xnew

(Σ̂û − xnew)ᵀ(β − β̂) + ûᵀ1
n

n∑
i=1

[h(X ᵀ
i· β̂)(1− h(X ᵀ

i· β̂))]−1εiXi·.

Σ̂û ≈ xnew

Variance enhancement projection direction.

û = arg min
u∈Rp

uᵀΣ̂u

subject to ‖Σ̂u − xnew‖∞ ≤ ‖xnew‖2λn

|xᵀ
newΣ̂u − ‖xnew‖2

2| ≤ ‖xnew‖2
2λn

where λn � (log p/n)1/2.
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Σ̂û ≈ xnew

Variance enhancement projection direction.

û = arg min
u∈Rp

uᵀΣ̂u

subject to ‖Σ̂u − xnew‖∞ ≤ ‖xnew‖2λn

|xᵀ
newΣ̂u − ‖xnew‖2

2| ≤ ‖xnew‖2
2λn

where λn � (log p/n)1/2.

Zijian Guo High-dim Logistic Inference 9/21



What if no additional constraint?

û = arg min
u∈Rp

uᵀΣ̂u

subject to ‖Σ̂u − xnew‖∞ ≤ ‖xnew‖2λn

For a dense xnew: there is no bias correction,

‖xnew‖∞ ≤ ‖xnew‖2λn ⇒ û = 0!

Curse of dimensionality: too much flexibility of searching
the direction.
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Curse of dimensionality: too much flexibility of searching
the direction.

Zijian Guo High-dim Logistic Inference 10/21



Additional Constraint and Feasible Set

(0,0)
Additional constraint

xnew = ei

Complex xnew

I Large dashed: dense xnew without additional constraint.
I Solid parallelogram: dense xnew with additional constraint.∣∣∣xᵀ

newΣ̂u − ‖xnew‖2
2

∣∣∣ ≤ ‖xnew‖2
2λ
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LIVE Estimator

x̂ᵀ
newβ = xᵀ

newβ̂+ûᵀ1
n

n∑
i=1

[h(X ᵀ
i· β̂)(1− h(X ᵀ

i· β̂))]−1︸ ︷︷ ︸
weight for i−th observation

Xi·(yi−h(X ᵀ
i· β̂)).

with the projection direction û defined as

û = arg min
u∈Rp

uᵀΣ̂u

subject to ‖Σ̂u − xnew‖∞ ≤ ‖xnew‖2λn

|xᵀ
newΣ̂u − ‖xnew‖2

2| ≤ ‖xnew‖2
2λn

where λn � (log p/n)1/2.
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Statistical Inference

We construct the CI for P(yi = 1|Xi· = xnew) as,

CIα(xnew) =
[
h
(

x̂ᵀ
newβ − zα/2V̂1/2

)
,h
(

x̂ᵀ
newβ + zα/2V̂1/2

)]
,

with

V̂ = ûᵀ

[
1
n2

n∑
i=1

[h(X ᵀ
i· β̂)(1− h(X ᵀ

i· β̂))]−1Xi·X
ᵀ
i·

]
û.

EHR phenotyping

φα(xnew) = 1
(

x̂ᵀ
newβ − zαV̂1/2 ≥ 0

)
.
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Theory and Optimality
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Theoretical Justification

Theorem 1.
Under regularity conditions, if

k �
√

n/[log p(log n)1/2],

then
P
[
V−1/2

(
x̂ᵀ

newβ − xᵀ
newβ

)
≥ zα

]
→ α.

I No sparsity on Σ−1 and xnew.
I Approximate ûᵀ 1

n

∑n
i=1[h(X ᵀ

i· β̂)(1− h(X ᵀ
i· β̂))]−1Xi·εi by

ûᵀ 1
n

∑n
i=1[h(X ᵀ

i·β)(1− h(X ᵀ
i·β))]−1Xi·εi

I Contraction Principle.
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Discussion: Optimality of CI for βj

0
√

n
log p

n
log p

Adaptive

1√
n

sparsity k

k log p
n

Not adaptive

Cai, T. Tony, Zijian Guo, and Rong Ma. "Statistical inference for high-dimensional

generalized linear models with binary outcomes." JASA, to appear.
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Numerical Results

Zijian Guo High-dim Logistic Inference 15/21



Simulation Studies

1. p = 501
2. n ∈ {200,400,600}
3. β1 = 0, βj = (j − 1)/20 for 2 ≤ j ≤ 11 and βj = 0 for

12 ≤ j ≤ p
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Simulation Studies

LiVE Post Selection hdi WLDP
‖xnew‖2 n Cov ERR Len t Cov ERR Len t Cov ERR Len t Cov ERR Len t

16.1
200 0.98 0.05 0.88 5 0.68 0.54 0.42 1 0.97 0.06 0.93 370 1.00 0.00 1.00 34
400 0.97 0.10 0.81 14 0.71 0.57 0.38 2 0.96 0.10 0.87 751 1.00 0.00 1.00 56
600 0.95 0.13 0.74 23 0.70 0.68 0.32 6 0.94 0.10 0.83 3212 1.00 0.00 1.00 118

1.90
200 0.96 0.62 0.34 5 0.80 0.77 0.31 1 0.92 0.86 0.31 371 1.00 0.36 0.58 34
400 0.94 0.92 0.23 14 0.83 0.93 0.24 2 0.92 0.96 0.23 751 1.00 0.45 0.53 54
600 0.95 0.95 0.19 22 0.82 0.95 0.20 5 0.95 0.97 0.19 3211 1.00 0.47 0.50 118
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Real Data Applications

1. Data: extracted from the Penn Medicine clinical data
repository, including demographics, laboratory
results, medication prescriptions, vital signs, and
encounter meta information.

2. 348 patients, 198 predictors in the final analyses
3. Goal: predicting hypertension, hypertension resistant

to standard treatment (“R-hypertension").
4. Outcome prevalence: 39.4% and 8.1%
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Real Data Results

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

hypertension Sample B

Index

P
ro

je
ct

ed
 P

ro
ba

bi
lit

ie
s

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

R−hypertension Sample B

Index
P

ro
je

ct
ed

 P
ro

ba
bi

lit
ie

s

We randomly sampled 30 patients as the test sample,
I Left, indexes 1 to 11 correspond to hypertension.
I Right, indices 1 to 4 correspond to R-hypertension.
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Conclusion and Discussion

1. Non-linear outcome model: Reweighting
2. Uniform inference for xnew: Additional constraint
3. Optimality of CI construction

Future research
1. Outcome surrogates
2. Model misspecification
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