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Instrumental Variables

I Observational study: unmeasured confounders
I Educ’s effect on salary (Card, 1995): family background
I Instrumental variable: proximity to college

Treatment Outcome
Treatment Effect

Unmeasured

Instrument
(A1)

(A3)

(A2)
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Existing works (subset)

1. Weak IV: Staiger and Stock (1997); Stock, Wright, and Yogo (2002); Chao

and Swanson (2005).

2. Orthogonality: Kolesár, Chetty, Friedman, Glaeser, and Imbens (2015);

Bowden, Smith, and Burgess (2015).

3. Majority/plurality rule: Bowden, Smith, Haycock, and Burgess (2016);

Kang, Zhang, Cai, and Small (2016); Guo, Kang, Cai, and Small (2018);

Windmeijer, Farbmacher, Davies, and Smith (2019); Windmeijer, Liang, Hartwig,

and Bowden (2021).

4. Heteroscedastic variance+homoscadastic correlation:
Lewbel (2012); Tchetgen Tchetgen, Sun, and Walter (2021).

Robust Inference with all IVs being possibly invalid?
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Outcome Yi ∈ R, treatment Di ∈ R, IV Zi .

Y (z,d)
i = Y (0,0)

i + dβ + g1(z), E(Y (0,0)
i | Zi) = g2(Zi),

Yi = Diβ + g(Zi) + εi with g = g1 + g2, E(εi | Zi) = 0.

Treatment D Outcome Y
Treatment Effect β

Unmeasured H

Instrument Z

g1 6= 0

g2 6= 0
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Invalid IV Model

Yi = Diβ + g(Zi ,Xi) + εi with E(εi | Zi ,Xi) = 0.

Di = f (Zi ,Xi) + δi with E(δi | Zi ,Xi) = 0.

h(Zi ,Xi) = g(Zi ,Xi)− ψ(Xi) with ψ(Xi) = E[g(Zi ,Xi) | Xi ].

1. Valid IV: g(Zi ,Xi) does not depend on Zi
I Binary IV: g(0,Xi ) = g(1,Xi )
I h(·) = 0 and g(Zi ,Xi ) = ψ(Xi )

2. Invalid IV: g(Zi ,Xi) depends on Zi
I Binary IV: g(0,Xi ) 6= g(1,Xi )
I h(·) 6= 0
I Polynomial violation: g(Zi ,Xi ) = Zi + · · ·+ Z q

i + ψ(Xi )
I Interaction violation: g(Zi ,Xi ) = Zi · (Xᵀ

i γ) + ψ(Xi )
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Two Stage Curvature Identification (TSCI)

Reduced form with covariates

Yi = F (Zi ,Xi) + εi + βδi , with F (Zi ,Xi) = βf (Zi ,Xi) + g(Zi ,Xi)

Di = f (Zi ,Xi) + δi .

1. first stage: estimate f (Zi ,Xi) by random forests.
2. second stage: assume g(·) is generated by V and adjust

the violation form

β =
〈P⊥V F ,P⊥V f 〉
〈P⊥V f ,P⊥V f 〉

if f 6∈ V

key assumption: ‖P⊥V f‖22 > 0.
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First stage: splitting random forests (RF)

Randomly split the data into disjoint A1 and A2

1. Write A1 = {1,2, · · · ,n1} and set n1 = b2n/3c.
2. Construct the RF with {Di ,Xi ,Zi}i∈A2

3. Estimate f (z, x) by the RF and {Xj ,Zj ,Dj}j∈A1

f̂ (z, x) =
∑
j∈A1

ωj(z, x)Dj

I ωj (z, x) ≥ 0 and
∑

j∈A1
ωj (z, x) = 1

I Weights construction: {Xj ,Zj}j∈A1 and RF.

Reference: Lin and Jeon (2006); Meinshausen (2006); Wager and Athey (2018).
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First stage: a linear estimator

Estimate fA1 = (f (Z1,X1), · · · , f (Zn1 ,Xn1))ᵀ by

f̂A1 = ΩDA1 with Ωij = ωj(Zi ,Xi) for i , j ∈ A1.

where f̂A1 = (̂f (Z1,X1), · · · , f̂ (Zn1 ,Xn1))ᵀ.

I Ω is similar to hat matrix in linear regression
I Ω is NOT a projection matrix.
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Second stage: generating g(·)

g(Zi ,Xi) = h(Zi ,Xi) + ψ(Xi).

I Consider the violation space

V = span{v1(·), · · · , vq(·)}

and approximate the violation function h(Zi ,Xi) = V ᵀ
i π with

Vi = (v1(Zi ,Xi), · · · , vq(Zi ,Xi))ᵀ

I ψ(Xi) ≈W ᵀ
i ψ with Wi denoting the basis expansion

Write the outcome model,

YA1 = DA1β + VA1π + WA1ψ︸ ︷︷ ︸
g(·)

+εA1 .
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Second stage: known V

Applying Ω to the outcome model,

ŶA1 = f̂A1β + V̂A1π + ŴA1ψ + ε̂A1 ,

where ŶA1 = ΩYA1 , f̂A1 = ΩDA1 , V̂A1 = ΩVA1 , ŴA1 = ΩWA1 .

β̂init(V ) =

Ŷ ᵀ
A1

P⊥
V̂A1 ,ŴA1

f̂A1

f̂ ᵀA1
P⊥

V̂A1 ,ŴA1

f̂A1

=
Y ᵀ
A1

MRF(V )DA1

Dᵀ
A1

MRF(V )DA1

where
MRF(V ) = ΩᵀP⊥

V̂A1 ,ŴA1
Ω.
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Bias correction

This estimator suffers from a finite-sample bias

εᵀA1
MRF(V )δA1

Dᵀ
A1

MRF(V )DA1

≈ Cov(δi , εi) · Tr[MRF(V )]

Dᵀ
A1

MRF(V )DA1

.

I Tr[MRF(V )]: might be large for random forests.
I Dᵀ

A1
MRF(V )DA1 : IV strength.

β̂RF(V ) = β̂init(V )−
∑n1

i=1[MRF(V )]ii δ̂i [ε̂(V )]i
Dᵀ
A1

MRF(V )DA1

where δ̂A1 = DA1 − f̂A1 and ε̂(V ) = P⊥V ,W [Y − Dβ̂init(V )].

First stage RF: Sample splitting+ Bias correction
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Confidence interval

CIRF(V ) =
(
β̂RF(V )− zα/2ŜE(V ), β̂RF(V ) + zα/2ŜE(V )

)
,

with

ŜE(V ) =

√∑n1
i=1[ε̂(V )]2i [MRF(V )DA1 ]2i

Dᵀ
A1

MRF(V )DA1

.

Heteroscadastic errors: Cov(εi , δi | Zi ,Xi),Var(εi | Zi ,Xi), and
Var(δi | Zi ,Xi) are not necessarily constant.
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Violation space selection
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Generalized IV Strength

Generalize the concentration parameter as,

µ(V ) :=
f ᵀA1

MRF(V )fA1∑
i∈A1

Var(δi | Xi ,Zi)/|A1|
.

I Test µ(V ) ≥ max{2Tr [MRF(V )] ,10}

I Estimate µ(V ) by µ̂(V ) :=
Dᵀ
A1

MRF(V )DA1

‖DA1−f̂A1‖
2
2/n1

.

Conduct the generalized IV strength test

µ̂(V ) ≥ max{2Tr [MRF(V )] ,10}+ Sα0(V ),

where α0 = 0.025 and Sα0(V ) controls µ̂(V )− µ(V ).
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Violation space collection

Choose the best violation space among

V0 ⊂ V1 ⊂ · · · ⊂ VQ.

I V0 := {h = 0} as the null violation space
I Vq denotes the space spanned by a pre-specified set of

basis functions {v1(·), v2(·), · · · , vq(·)} for q ≥ 1.
Define Qmax as,

Qmax = arg max
q≥0

{
µ̂(Vq) ≥ max{2Tr [MRF(Vq)] ,10}+ Sα0(Vq)

}
.
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Violation space selection

Choose the best violation space among

V0 ⊂ V1 ⊂ · · · ⊂ VQmax
.

Choose the smallest 0 ≤ q ≤ Qmax such that

β̂RF(Vq) is not much different from {β̂RF(Vq′)}q+1≤q′≤Qmax

Example for Qmax = 4

β̂RF(V1) β̂RF(V2) β̂RF(V3) β̂RF(V4)

β̂RF(V0) X X X X

β̂RF(V1) β̂RF(V2) β̂RF(V3) β̂RF(V4)

β̂RF(V0) X X X X
β̂RF(V1) X X X
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TSCI with Machine Learning

Write the first stage machine learning estimator as,

f̂A1 = ΩDA1 for some matrix Ω ∈ Rn1×n1 .

Define a generalized transformation matrix

M(V ) = ΩᵀP⊥
V̂A1 ,ŴA1

Ω, with V̂A1 = ΩVA1 , ŴA1 = ΩWA1 ,

and the TSCI with machine learning

β̂(V ) =
Y ᵀ
A1

M(V )DA1

Dᵀ
A1

M(V )DA1

−
∑n1

i=1[M(V )]ii δ̂i [ε̂(V )]i
Dᵀ
A1

M(V )DA1

.

I Ω for Basis approximation, Boosting, DNN.
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Inference guarantee

(R2-Inf) f ᵀA1
[M(V )]2fA1 � max{(Tr[M(V )])2,1}.

Theorem 1 (G. and Bühlmann, 2022).
Under Condition (R2-Inf) and other regularity conditions, we
have

1
SE(V )

(
β̂(V )− β

)
d→ N(0,1).

In the paper, we also establish
I Improvement of bias correction.
I Consistency of violation space selection.
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Effect of education on income

Analyze the same data set as Card (1995).
I n = 3010: National Longitudinal Survey of Young Men
I log wages (outcome), years of schooling (treatment).
I IV: an indicator for a nearby 4-year college in 1966.
I Baseline covariates: a quadratic function of potential

experience, a race indicator, and dummy variables for
residence in a metropolitan area and the south in 1976.
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We test against the violation form generated by
V1 = {nearc4,nearc4 · exper,nearc4 · exper2,nearc4 ·
race,nearc4 · sama,nearc4 · south}.

I Report 500 TSCI estimates due to 501 different splitting.
I Correction of the positive “ability bias" of OLS.
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I Proximity to the college is not valid: out of the 500 splits,
302 splits report an invalid IV.

I Multi-splitting CI is (0.0282,0.0898)
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Conclusion and Discussion

Treatment D Outcome Y
Treatment Effect β

Unmeasured

Instrument Z
f 6= 0

g1 6= 0

g2 6= 0

I ML+ self-checking weak and invalid IVs.

I Correction of the overfitting bias.

I Non-constant effect + post-selection inference.
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SEM with hidden confounders

Yi ← Diβ + g1(Zi) + ν1(Hi) + ε0i , Di ← f1(Zi) + ν2(Hi) + δ0
i .

Define g2(Zi) = E (ν1(Hi) | Zi) and f2(Zi) = E (ν2(Hi) | Zi) .

Treatment D Outcome Y
Treatment Effect β

Unmeasured H

Instrument Z

g1 6= 0

g2 6= 0
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Adjustment of finite-sample randomness by splitting

Consider S random sample splitting and denote the TSCI point
and standard error estimators as

{β̂s}1≤s≤S and {ŜE
s
}1≤s≤S

For any β0 ∈ R, we construct S p values as

ps(β0) = 2(1− ψ(|β̂s − β0|/ŜE
s
)), for 1 ≤ s ≤ S.

We define the multi-splitting confidence interval as

{β0 ∈ R : 2 ·median{ps(β0)}Ss=1 ≤ α}.
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Violation space selection

Choose the smallest 0 ≤ q ≤ Qmax such that

β̂RF(Vq) is not much different from {β̂RF(Vq′)}q+1≤q′≤Qmax

For 0 ≤ q ≤ Qmax − 1, define

CRF(Vq) =

0 if maxq+1≤q′≤Qmax

|β̂RF(Vq)−β̂RF(Vq′ )|√
Ĥ(Vq ,Vq′ )

≤ ρ̂

1 otherwise
,

where ρ̂ > 0 is a positive threshold.

q̂c = arg min
0≤q≤Qmax

{
CRF(Vq) = 0

}
.
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IV Strength Assumption

(R2)f ᵀA1
M(V )fA1 � max{Tr[M(V )], ‖R(V )‖22,1}.

I µ(V ) = f ᵀA1
M(V )fA1/σ

2
δ

I Test µ(V ) ≥ max{2Tr[M(V )],10}.
I Small approximation error R(V ) = h − Vπ.
I Strong IV: f ᵀA1

M(V )fA1 � n.

I Enough association: not requiring f̂A1 to be consistent.

(R2-Inf) f ᵀA1
[M(V )]2fA1 � max{(Tr[M(V )])2, ‖R(V )‖22,1}.

I RF: f ᵀA1
[M(V )]2fA1 ≤ f ᵀA1

M(V )fA1

I Basis/DNN: f ᵀA1
[M(V )]2fA1 = f ᵀA1

M(V )fA1
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Simulation setting

Yi = Di+h(Zi)+0.2·
20∑

j=1

Xij+εi , Di = f (Zi ,Xi)+δi , for 1 ≤ i ≤ n.

f (Zi ,Xi) = −25
12

+ Zi + Z 2
i +

1
8

Z 4
i + Zi · (a ·

5∑
j=1

Xij)−
p∑

j=1

0.3Xij .

Generate Zi as uniform (−2,2).

I Linear violation (vio= 1): h(Zi) = Zi ;
I Quadratic violation (vio= 2): h(Zi) = Zi + Z 2

i − 1.
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Empirical Coverage and Validity Test

TSCI-RF TSLS Other RF(oracle)
vio a n Oracle Comp Robust Invalidity Init Plug Full

1000 0.93 0.93 0.93 1.00 0 0.93 0.02 0.79
3000 0.95 0.95 0.95 1.00 0 0.94 0.00 0.740.0
5000 0.96 0.95 0.95 1.00 0 0.96 0.00 0.66
1000 0.96 0.96 0.96 1.00 0 0.96 0.03 0.80
3000 0.95 0.93 0.92 1.00 0 0.95 0.00 0.680.5
5000 0.95 0.93 0.93 1.00 0 0.95 0.00 0.60
1000 0.94 0.93 0.90 1.00 0 0.93 0.02 0.79
3000 0.94 0.94 0.93 1.00 0 0.94 0.00 0.60

1

1.0
5000 0.94 0.93 0.93 1.00 0 0.94 0.00 0.47
1000 0.48 0.00 0.00 1.00 0 0.24 0.00 0.00
3000 0.78 0.00 0.00 1.00 0 0.58 0.00 0.000.0
5000 0.85 0.02 0.02 1.00 0 0.66 0.00 0.00
1000 0.84 0.00 0.00 0.95 0 0.64 0.07 0.01
3000 0.87 0.87 0.87 1.00 0 0.77 0.63 0.000.5
5000 0.93 0.93 0.93 1.00 0 0.83 0.39 0.00
1000 0.91 0.90 0.90 1.00 0 0.89 0.34 0.21
3000 0.93 0.93 0.92 1.00 0 0.90 0.00 0.02

2

1.0
5000 0.93 0.93 0.93 1.00 0 0.92 0.00 0.01
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