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Confounding and Causal Effects

“Confounding is one of the most fundamental impediments to the elucidation of causal

inferences from empirical data." (Pearl, 2009)

Causal inference with hidden confounders “remains a fertile field for methodological

research." (Imbens, Rubin, 2015)

Treatment Outcome
Treatment Effect = ?

Hidden Confounder

I OLS or Lasso is biased.
I Construction of instrumental variables.
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Today’s Talk Focus

Domagoj Ćevid Peter Bühlmann

Guo Z, Ćevid D, Bühlmann P. (2022) Doubly Debiased Lasso: High-Dimensional

Inference under Hidden Confounding. Ann. Statist. 50(3): 1320-1347.
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The hidden H (e.g. population, environment) affects both
the landmark gene (Y) and other genes (X).
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Hidden Confounder Model

Linear Structural Equation Model, for 1 ≤ i ≤ n,

Yi ← βᵀXi· + φᵀHi· + ei Xi· = ΨᵀHi· + Ei· (1)

I Observed: Yi and Xi· ∈ Rp

I High-dimension with ‖β‖0 ≤ k
I Small number of hidden Hi· ∈ Rq

I Dense Hidden Confounders.
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Dense Confounding

0 0.05p p

No Confounding
Dense Confounding

Figure: Number of confounded Xij

Research goal
Inference for βj in High-Dim and Dense Confounding.
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Doubly Debiased Lasso
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Perturbed Linear Model

Yi ← βᵀXi· + φᵀHi· + ei

Marginalizing out Hi· (Approximating φᵀHi· by bᵀXi·)

Yi = (β + b)ᵀXi· + εi and Xi· = ΨᵀHi· + Ei·, (2)

with εi = ei + φᵀHi· − bᵀXi· and b = (ΣE + ΨΨᵀ)−1Ψᵀφ.

Dense Confounding setting:
I 1√

n‖Xb‖2 is of constant order.

I Dense Ψᵀ ∈ Rp → ‖b‖2 .
√

1/p.
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Spectral Deconfounding Estimator of β

For a spectral transformation Q ∈ Rn×n

β̂ = arg min
β∈Rp

1
2n
‖Q (Y − Xβ) ‖2

2 + λ1

p∑
j=1

‖QX·j‖2√
n
|βj |, (3)

where λ1 = Aσε
√

log p/n is a tuning parameter.
I Lasso estimator: Q = I
I Trim transformation Q (Ćevid, Bühlmann,

Meinshausen, 2018)
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Trim Transform

For X ∈ Rn×p, X = UΛV ᵀ. (Focus on p > n + 1)
I ρ-trim Q ∈ Rn×n shrinks top bρnc singular values of X .

QX = UHρ(Λ)V ᵀ

I Hρ(Λ) shrinks Λ1,1,Λ2,2, · · · ,Λbρnc−1,bρnc−1 to Λbρnc,bρnc.

I Robust: median trim with ρ = 1
2
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GTEx project (Lonsdale et al., 2013)

p = 12,646 gene expression levels; n = 706 individuals.
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Two Sources of Bias

Confidence Interval Construction for βj with 1 ≤ j ≤ p?

Standard Debiased Lasso: Zhang and Zhang (2014); van
de Geer et al. (2014); Javanmard and Montanari (2014).

Y − X−1β̂−1 = ε+ X1 (β1 + b1) + X−1b−1 + X−1(β−1 − β̂−1).

I X−1b−1: hidden confounder bias
I X−1(β−1 − β̂−1): bias of estimating β
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Hidden Confounding Bias

Introduce P ∈ Rn×n to shrinks singular values of the
nuisance design X−1.

P(Y−X−1β̂−1) = P[ε+X1(β1+b1)]+PX−1b−1+PX−1(β−1−β̂−1).

P: reduce the bias X−1b−1

I 1√
n‖PX−1b−1‖2 .

√
q/min{n,p}

I 1√
n‖X−1b−1‖2 can be of constant order.
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High-dimensional Bias

Decouple the relationship (with λ �
√

log p/n)

γ̂ = arg min
γ∈Rp−1

 1
2n
‖P(X1 − X−1γ)‖2

2 + λ

p∑
j=2

‖PX·,j‖2√
n
|γj |

 .

Define the residue Z1 = X1 − X−1γ̂ as

KKT Condition : ‖1
n

(PZ1)ᵀPX−1‖∞ ≤ λ
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Doubly Debiased Lasso

β̃1 =
(PZ1)ᵀP(Y − X−1β̂−1)

(PZ1)ᵀPX1
.

Decompose the error β̃1 − β1

(PZ1)
ᵀPε

(PZ1)ᵀPX1
+
(PZ1)

ᵀPX−1b−1

(PZ1)ᵀPX1
+
(PZ1)

ᵀPX−1(β−1 − β̂−1)

(PZ1)ᵀPX1
+ b1.

I P = I: standard debiased estimator.
I P depends on parameter of interest.
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Confidence Interval

A confidence interval (CI) with asymptotic coverage 1− α
can be obtained as

CI(β1) =

(
β̃1 − z1−α

2

√
σ̂2
ε · Z

ᵀ
1P4Z1

(Z ᵀ
1P2X1)2 , β̃1 + z1−α

2

√
σ̂2
ε · Z

ᵀ
1P4Z1

(Z ᵀ
1P2X1)2

)
,

where z1−α
2

is the 1− α
2 quantile of standard normal.

We estimate the variance of εi = Yi − (β + b)ᵀXi· by

σ̂2
ε =

1
Tr(Q2)

‖Q(Y − X β̂)‖2
2.
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Normality and Efficiency
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Assumptions

Xi· = ΨᵀHi· + Ei· with Ψ = (Ψ1,Ψ2, . . . ,Ψp)

Sparse Precision: ΩE = (EEi·E
ᵀ
i·)
−1 satisfies

c0 ≤ λmin(ΩE ) ≤ λmax(ΩE ) ≤ C0, ‖(ΩE )1·‖0 log p/n→ 0.

Dense Confounding: λq(Ψ−1) &
√

p and
max {‖Ψ(ΩE )·,1‖2, ‖Ψ1‖2, ‖Ψ−1(ΩE )−1,1‖2} .

√
q.

Commonly assumed in factor model.
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When Dense Confounding holds?

A fixed proportion of {Ψl ∈ Rq}1≤j≤p are i.i.d generated

Xi1

Xi2

Xi3

...

Xij

...

Xip

Hi·

Ψ 1

Ψ
p

Ψ
j
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p = 12,646 gene expression levels; n = 706 individuals.
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Theorem 1 (G. Ćevid, Bühlmann, 2020).

Suppose q � min{
√

n, n
‖(ΩE )1·‖0 log p}, k �

√
n

log p and
min{ρ, ρ1}min{n,p} ≥ 3q + 1, then

1√
V

(
β̃1 − β1

)
d→ N(0,1), (4)

V =
σ2
ε · Z

ᵀ
1P4Z1

(Z ᵀ
1P2X1)2 and V−1 σ2

εTr(P4)

σ2
η [Tr(P2)]2

p→ 1. (5)

I Sparse β and small q.

I Enough trimming: min{ρ, ρ1}min{n,p} ≥ 3q + 1
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Efficiency

Benchmark: Gauss-Markov σ2
ε /(nσ2

η)
ARE = limn→∞

V
σ2
ε/(nσ2

η)

ARE ∈
[

1
min{c∗,1}

,
1

(1− ρ∗) min{c∗,1}

]
, (6)

where ρ∗ = limn→∞ ρ1(n) and c∗ = lim inf p/n ∈ (0,∞].

1. A smaller ρ1(n) leads to a more efficient estimator.
2. For ρ∗ = 0, ARE = max{1/c∗,1}
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Theorem 2 (G. Ćevid, Bühlmann, 2020).
If p ≥ n and ρ1(n)→ 0, Doubly Debiased Lasso estimator
achieves the Gauss-Markov efficiency bound σ2

ε

σ2
ηn .

I We take ρ1(n) = 3q+1
n → 0.

I Efficiency: Dense Confounding=No Confounding.

0 0.05p p

Dense Confounding

I Typical results for hidden confounder model: retain
consistency but lose efficiency. (Wooldridge, 2010)
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Numerical Results
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Simulation Setting

Yi ← βᵀXi· + φᵀHi· + ei

Xi· = ΨᵀHi· + Ei·

1. q = 3
2. s = 5 and β = (1,1,1,1,1,0, · · · 0) ∈ Rp.

3. Ei· ∼ Np(0, I), Hi· ∼ Nq(0, I), ei ∼ N(0,1)

4. Ψij ∼ N(0,1) for 1 ≤ i ≤ q,1 ≤ j ≤ p and φj ∼ N(0,1)
for 1 ≤ j ≤ q

5. We repeat the simulations 5,000 times.
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Dependence on p
n = 500 and p varies from 50 to 2,000,
I Doubly Debiased Lasso
I Standard Debiased Lasso
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Real Data Analysis

Data: GTEx project (Lonsdale et al., 2013)
I Normalized gene expression data for the skeletal

muscle tissue
I p = 12,646 gene expression levels over n = 706

individuals.
I Outcome: Landmark genes (Subramanian et al.,

2017)
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CI Comparison

I x-axis is aligned with absolute values of Lasso.
I Doubly Debiased Lasso is more conservative than

Standard Debiased Lasso

Zijian Guo(Rutgers) Doubly Debiased Lasso 24/25



Take-home Message

1. Challenges: High-dimension + hidden confounding
2. Doubly Debiased Lasso: New Trim.
3. Efficiency.

0 0.05p p

No Con
Dense Confounding

Figure: Number of confounded Xij

Make good use of Dense Confounding.
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Discussion (Big Picture)
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Methods to Address Confounding

One Treatment Many Treatments
Condition Constructing valid IV Dense confounding
Method IV-based method Doubly Debiased
Consistency yes (valid IV) yes
Efficiency no yes

High-dim IVs: Gautier and Rose, 2011; Fan and Liao, 2014; Lin et al., 2015; Belloni et

al., 2017; Neykov et al., 2018.

Invalid IVs: Guo, Z., Kang, H., Cai, T. T., & Small, D. S. (2018). Confidence intervals

for causal effects with invalid instruments by using two stage hard thresholding with

voting. JRSSB, 80(4), 793-815.

Advertisement: econometrics seminar at CUHK, April 21, 2021.
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Nuisance Trim

Introduce P ∈ Rn×n to shrinks singular values of the
nuisance design X−1.

I X−1 = U(X−1)Λ(X−1)V ᵀ(X−1)

I ρ1-trim P shrinks top bρ1nc singular values of X−1 to
[Λ(X−1)]bρ1nc,bρ1nc

I P depends on the variable of interest!
I P 6= Q.
I ρ1 affects the efficiency.
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Genes mirror geography within Europe

Data: 197,146 loci in 1,387 individuals (individual origins).

Novembre, John, et al. Nature (2008).
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Measurement Error Model

SEM between outcome and covariates

Y 0
i ← βᵀX 0

i + εi

Measurement contaminated with hidden confounders

Yi ← νᵀHi· + Y 0
i ; Xi· ← ΨᵀHi· + X 0

i· .

Reduced to the hidden confounding model

Yi = βᵀXi· + (ν −Ψβ)ᵀHi· + εi and Xi· = ΨᵀHi· + X 0
i·
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Trimming and Efficiency

I q = 3
I ρ = 0.02: shrinks 6 largest singular values
I ρ = 0.02: Bb and Bβ are small
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Dependence on n

p = 500 and n varies from 100 to 2,000.
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