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Confounding and Causal Effects

“Confounding is one of the most fundamental impediments to the elucidation of causal
inferences from empirical data." (Pearl, 2009)
Causal inference with hidden confounders “remains a fertile field for methodological

research.” (Imbens, Rubin, 2015)

|
| Hidden Confounder :

Treatment Effect = ?
Treatment » Outcome

» OLS or Lasso is biased.
» Construction of instrumental variables.
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Today’s Talk Focus

Domagoj Cevid Peter Bithimann

Guo Z, Cevid D, Biihimann P. (2022) Doubly Debiased Lasso: High-Dimensional
Inference under Hidden Confounding. Ann. Statist. 50(3): 1320-1347.
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The hidden H (e.g. population, environment) affects both
the landmark gene (Y) and other genes (X).
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Hidden Confounder Model

Linear Structural Equation Model, for 1 < i < n,

Y "X +¢"H. + e X.=VTH;. + E;. (1)

» Observed: Y;and X;. ¢ RP

» High-dimension with ||3]jo < k

» Small number of hidden H;. € R?
» Dense Hidden Confounders.
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Dense Confounding
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Figure: Number of confounded X

Research goal

Inference for 3; in High-Dim and Dense Confounding.
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Doubly Debiased Lasso

Zijian Guo(Rutgers) Doubly Debiased Lasso



Perturbed Linear Model

Yi < 07X + ¢"H;. + e
Marginalizing out H;. (Approximating ¢™H;. by b7 .X;.)

Yi=(B+b)X.+¢ and X.=VH.+E., (2

withe; = €+ ¢TH;, — bTX, and b= (Zg+WWT) 'WTp

Dense Confounding setting:
> :[IXbl|2 is of constant order.

» Dense VT € RP — ||b]l2 < /1/p.
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Spectral Deconfounding Estimator of 3

For a spectral transformation Q € R"*"

19Xl
Vvn

~ 1 P
B =argmin 5 [1Q(Y = XB) 5+ M D Bl @)

=

where Ay = Ao./log p/nis a tuning parameter.
» Lasso estimator: Q =1

» Trim transformation Q (Cevid, Biihimann,
Meinshausen, 2018)
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Trim Transform

For X e R™P X = UAVT. (Focusonp > n+1)
> p-trim Q@ € R™" shrinks top |pn| singular values of X.

OX = UH,(A)VT

> Hp(/\) shrinks /\171 , /\2,2, s ’/\Lpnj*1,[pnjf1 to ALP”J:LP”J'
> Robust: median trim with p = }

Zijian Guo(Rutgers) Doubly Debiased Lasso



GTEXx project (Lonsdale et al., 2013)

p = 12,646 gene expression levels; n = 706 individuals.
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Two Sources of Bias

Confidence Interval Construction for 5, with 1 < j < p?

Standard Debiased Lasso: Zhang and Zhang (2014); van
de Geer et al. (2014); Javanmard and Montanari (2014).

Y = Xo1By =€+ X (Br+ b))+ Xoboy + X 4(B1 — Bv).

» X_4b_1: hidden confounder bias
> X_1(B_1 — B_4): bias of estimating /3
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Hidden Confounding Bias

Introduce P € R" " to shrinks singular values of the
nuisance design X_;.

P(Y=X_153_1) = Ple+X1(B1+b1)|+PX_1b_4+PX_1(B_1—F_1).

P: reduce the bias X_1b_4
> L|PX_bill2 < /q/min{n, p}

> #qubq |2 can be of constant order.
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High-dimensional Bias

Decouple the relationship (with A\ < \/log p/n)

A )] 2 IPXl
7 = argmin § o |[P(Xi = Xa)[F+ A NG il ¢ -

YERPT j=2

Define the residue Z; = X; — X_17 as

KKT Condition - ||:—7(7>z1)T73x_1 o < A
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Doubly Debiased Lasso

7 - (PZ)TP(Y — X_15_1)
1 (PZ)TPX

Decompose the error 3; — f3

-~

(PZ1)"Pe  (PZ))TPX_1b_1  (PZ)TPX_1(B-1 — 1)

by.
(’PZ1 )TPX1 ('PZ1 )TPX1 ('PZ1 )TPX1 + b

» P = I. standard debiased estimator.
> P depends on parameter of interest.
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Confidence Interval

A confidence interval (Cl) with asymptotic coverage 1 — «
can be obtained as

~ 52 7T1Dp47Z, =2 . 714
o) = (Fr— oy JE TP D 5, [ 22
: (Z{P2X4) : (Z7P2X4)

where z;_¢ is the 1 — 3 quantile of standard normal.

We estimate the variance of ¢, = Y; — (8 + b)7 X. by

~2 1 A
O = TI'(QQ)HQ(Y XB)HZ
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Normality and Efficiency
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X.=VTH, + E. with W= (W, W,,... V)

Sparse Precision: Qg = (EE; E] )" satisfies

Co S )\min(QE) S )\max(QE) S CO7 ||(QE)1||0 |ng/n — 0.
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Xi. =VTH, + Ei. with ¥ = (U, V,,...,V,)
Sparse Precision: Qg = (EE; E] )" satisfies

Co S )\min(QE) S )\max(QE) S CO7 ||(QE)1||0 |ng/n — 0.
Dense Confounding: Aq(V_4) 2 /p and
max {[W(Qe). 1ll2, [W1llz, [[W-1(Qe)-1.1ll2} S V-

Commonly assumed in factor model.
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When Dense Confounding holds?

A fixed proportion of {W, € R9}4<j<, are i.i.d generated
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p = 12,646 gene expression levels; n = 706 individuals.
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Theorem 1 (G. Cevid, Biihimann, 2020).

Suppose q < min{/n, W}, k < X2 and

llologp log p
min{p, p1} min{n, p} > 3q+ 1, then

= (51— 51) S N Y) @)
. 052 o ZTP4Z1 1 O'?TI'(P4) P

» Sparse  and small q.
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Theorem 1 (G. Cevid, Biihimann, 2020).

Suppose q < min{/n, W}, k < X2 and

llologp log p
min{p, p1} min{n, p} > 3q+ 1, then

1 /~
-5 (Bi=81) % NE.) (4)
. 052 o ZTP4Z1 1 O'?TI'(P4) P

» Sparse  and small q.
» Enough trimming: min{p, p1} min{n, p} > 3q + 1
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Efficiency

Benchmark: Gauss-Markov ¢?/(no?)
ARE = ||mn_>oo #ﬂa%)

1 1
ARE € [min{c*,u’ (i —p*)min{c*,1}}’ 6)

where p* = limy_,o p1(n) and ¢* = liminf p/n € (0, xa].

1. A smaller p{(n) leads to a more efficient estimator.
2. For p* =0, ARE = max{1/c*, 1}
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max{1/c*,1}
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FIG 1. The plot of ARE versus ¢* = lim p/n, for the setting of p* =0
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Theorem 2 (G. Cevid, Bithimann, 2020).

If p > n and p1(n) — 0, Doubly Debiased Lasso estimator
achieves the Gauss-Markov efficiency bound ;—zn

> We take pi(n) = 22 — 0.
» Efficiency: Dense Confounding=No Confounding.

Dense Confounding
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» Typical results for hidden confounder model: retain
consistency but lose efficiency. (Wooldridge, 2010)
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Numerical Results
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Simulation Setting

> w =

Yi < B'X. + ¢"H;. + e
X. =VTH, + E;.

q=3
s=5andg=(1,1,1,1,1,0,---0) € R~.
E,'. ~ Np(O,I), H,'. ~ Nq(O,I), e ~ N(O,1)

V; ~ N(0,1)for1 <i<g,1<j<pandg; ~N(0,1)
for1 <j<gq

We repeat the simulations 5,000 times.
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Dependence on p

n =500 and p varies from 50 to 2,000,
» Doubly Debiased Lasso
» Standard Debiased Lasso

Cl coverage

0 500 1000 1500 2000
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Real Data Analysis

Data: GTEx project (Lonsdale et al., 2013)
» Normalized gene expression data for the skeletal
muscle tissue
> p =12, 646 gene expression levels over n = 706
individuals.
» Outcome: Landmark genes (Subramanian et al.,
2017)
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Cl Comparison

» x-axis is aligned with absolute values of Lasso.

» Doubly Debiased Lasso is more conservative than
Standard Debiased Lasso

estimate
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Take-home Message

1. Challenges: High-dimension + hidden confounding
2. Doubly Debiased Lasso: New Trim.
3. Efficiency.
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Take-home Message

1. Challenges: High-dimension + hidden confounding
2. Doubly Debiased Lasso: New Trim.

3. Efficiency.
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Figure: Number of confounded Xj;

Make good use of Dense Confounding.
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Discussion (Big Picture)
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Methods to Address Confounding

One Treatment Many Treatments
Condition | Constructing valid IV | Dense confounding
Method IV-based method Doubly Debiased
Consistency| yes (valid 1V) yes
Efficiency | no yes

Zijian Guo(Rutgers) Doubly Debiased Lasso



Methods to Address Confounding

One Treatment Many Treatments
Condition | Constructing valid IV | Dense confounding
Method IV-based method Doubly Debiased
Consistency| yes (valid 1V) yes
Efficiency | no yes

High-dim IVs: Gautier and Rose, 2011; Fan and Liao, 2014; Lin et al., 2015; Belloni et
al., 2017; Neykov et al., 2018.
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Methods to Address Confounding

One Treatment Many Treatments
Condition | Constructing valid IV | Dense confounding
Method IV-based method Doubly Debiased
Consistency| yes (valid 1V) yes
Efficiency | no yes

High-dim IVs: Gautier and Rose, 2011; Fan and Liao, 2014; Lin et al., 2015; Belloni et
al., 2017; Neykov et al., 2018.

Invalid IVs: Guo, Z., Kang, H., Cai, T. T., & Small, D. S. (2018). Confidence intervals
for causal effects with invalid instruments by using two stage hard thresholding with
voting. JRSSB, 80(4), 793-815.

Advertisement: econometrics seminar at CUHK, April 21, 2021.
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Nuisance Trim

Introduce P € R™" to shrinks singular values of the
nuisance design X_;.

> X 1= UX_)NX4)VT(X )
» pq-trim P shrinks top | pyn| singular values of X_; to
[NX_1)p1n), Losn)
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Nuisance Trim

Introduce P € R™" to shrinks singular values of the
nuisance design X_;.

> X 4= UX_4)ANX_4)VT(X 1)
» pq-trim P shrinks top | pyn| singular values of X_; to

[AMX1)] s Lpsn
» P depends on the variable of interest!

> P #Q.
> p; affects the efficiency.
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Genes mirror geography within Europe

Data: 197,146 loci in 1,387 individuals (individual origins).

Novembre, John, et al. Nature (2008).
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Measurement Error Model

SEM between outcome and covariates
VP BTXP + ¢
Measurement contaminated with hidden confounders
Yi< vTH. + Y?, X, « VTH, + X?.
Reduced to the hidden confounding model

Yi=BX + (v~ V)T H. +¢ and X.=WTH, + X?
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Trimming and Efficiency

» p = 0.02: shrinks 6 largest singular values
» p=0.02: By, and B; are small

\\\\\\\\\
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Dependence on n

p = 500 and n varies from 100 to 2, 000.
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