

Inference for Non-linear Treatment Effects with Control Function Methods

Zijian Guo

Department of Statistics
Rutgers University

February 25, 2021

Collaborators

Dylan Small

Sai Li

- Guo, Z., & Small, D. S. (2016). Control function instrumental variable estimation of nonlinear causal effect models. *Journal of Machine Learning Research*, 17(100), 1-35.
- Li, S., & Guo, Z. (2020). Causal Inference for Nonlinear Outcome Models with Possibly Invalid Instrumental Variables. *arXiv preprint arXiv:2010.09922*.

Overview of talk

- 1 Endogeneity and Instrumental Variable
- 2 Control Function and TSLS
- 3 Control Function with Possibly Invalid IVs

Endogeneity and Instrumental Variable

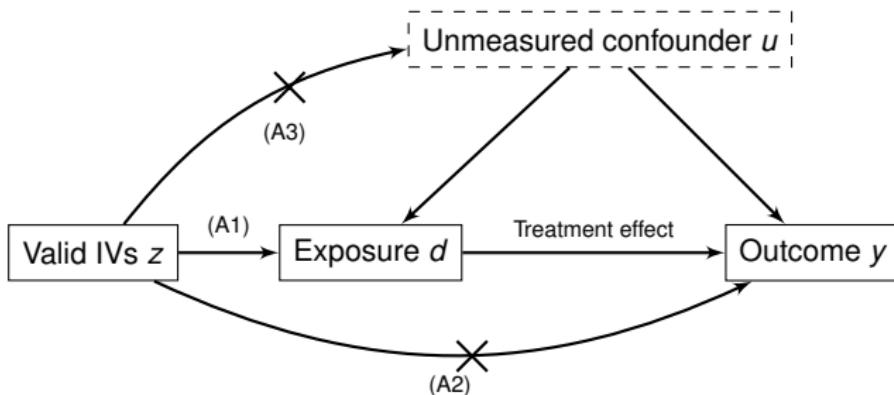


Figure: IV assumptions (A1)-(A3).

- (A1) association with the treatment;
- (A2) no direct effect on the outcome;
- (A3) ignorability.

Overview of talk

- 1 Endogeneity and Instrumental Variable
- 2 Control Function and TSLS
- 3 Control Function with Possibly Invalid IVs

Outcome model

$$y_i = \beta_0 + d_i \beta_1 + d_i^2 \beta_2 + x_i^T \psi + u_i, \quad \text{for } 1 \leq i \leq n$$

Treatment model

$$d_i = z_i \gamma_1 + z_i^2 \gamma_2 + x_i^T \phi + v_i \quad \text{for } 1 \leq i \leq n$$

- baseline covariate x_i
- u_i is correlated with v_i and hence d_i
- The result can be extended to **known** h

$$y_i = h(d_i) + x_i^T \psi + u_i$$

- 1 Predict d by \widehat{d}

$$\text{lm}(d \sim z + z^2 + x)$$

Predict d^2 by $\widehat{d^2}$

$$\text{lm}(d^2 \sim z + z^2 + x)$$

- 2 Run a second stage regression

$$\text{lm}(y \sim \widehat{d} + \widehat{d^2} + x)$$

Estimate β_1 and β_2 by coefficients in front of \widehat{d} and $\widehat{d^2}$.

IV and Control Function

- 1 Predict d by \hat{d}

$$\text{Im}(d \sim z + z^2 + x)$$

and obtain the residual $e_1 = d - \hat{d}$.

- 2 Run a second stage regression

$$\text{Im}(Y \sim d + d^2 + x + e_1)$$

Estimate β_1 and β_2 by coefficients in front of d and d^2 .

IV and Control Function

- 1 Predict d by \hat{d}

$$\text{lm}(d \sim z + z^2 + x)$$

and obtain the residual $e_1 = d - \hat{d}$.

- 2 Run a second stage regression

$$\text{lm}(Y \sim d + d^2 + x + e_1)$$

Estimate β_1 and β_2 by coefficients in front of d and d^2 .

- e_1 is a surrogate for part of the unmeasured confounder in d .
- Two Stage Residual Inclusion

Intuition and Assumption

If v is known, then

$$\begin{aligned}\mathbb{E}(y_i \mid d_i, x_i, \mathbf{v}_i) &= \beta_0 + \beta_1 d_i + \beta_2 d_i^2 + x_i^\top \psi + \mathbb{E}(u_i \mid d_i, x_i, v_i) \\ &= \beta_0 + \beta_1 d_i + \beta_2 d_i^2 + x_i^\top \psi + \mathbb{E}(u_i \mid z_i, x_i, v_i) \\ &= \beta_0 + \beta_1 d_i + \beta_2 d_i^2 + x_i^\top \psi + \mathbb{E}(u_i \mid v_i) \\ &= \beta_0 + \beta_1 d_i + \beta_2 d_i^2 + x_i^\top \psi + \rho v_i\end{aligned}$$

Assumptions

- 1 (u_i, v_i) are independent of z_i, x_i
- 2 $\mathbb{E}(u_i \mid v_i) = \rho v_i$

Intuition and Assumption

If v is known, then

$$\begin{aligned}\mathbb{E}(y_i \mid d_i, x_i, \mathbf{v}_i) &= \beta_0 + \beta_1 d_i + \beta_2 d_i^2 + x_i^T \psi + \mathbb{E}(u_i \mid d_i, x_i, v_i) \\ &= \beta_0 + \beta_1 d_i + \beta_2 d_i^2 + x_i^T \psi + \mathbb{E}(u_i \mid z_i, x_i, v_i) \\ &= \beta_0 + \beta_1 d_i + \beta_2 d_i^2 + x_i^T \psi + \mathbb{E}(u_i \mid v_i) \\ &= \beta_0 + \beta_1 d_i + \beta_2 d_i^2 + x_i^T \psi + \rho v_i\end{aligned}$$

Assumptions

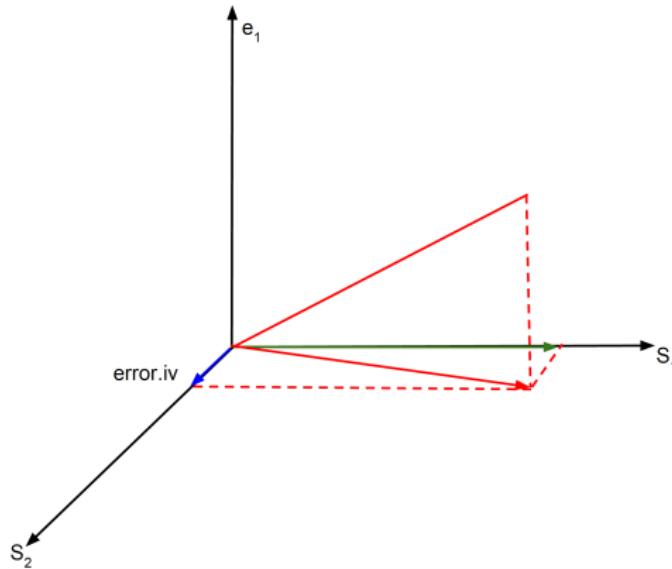
- ① (u_i, v_i) are independent of z_i, x_i
- ② $\mathbb{E}(u_i \mid v_i) = \rho v_i$

Imbens, W.G and Wooldridge, M.J. *Control Function and Related Methods*,
Lecture Notes on course "What's New in Econometrics ", NBER (2007).

- If the outcome model is linear in d , then **TSLS=CF**.

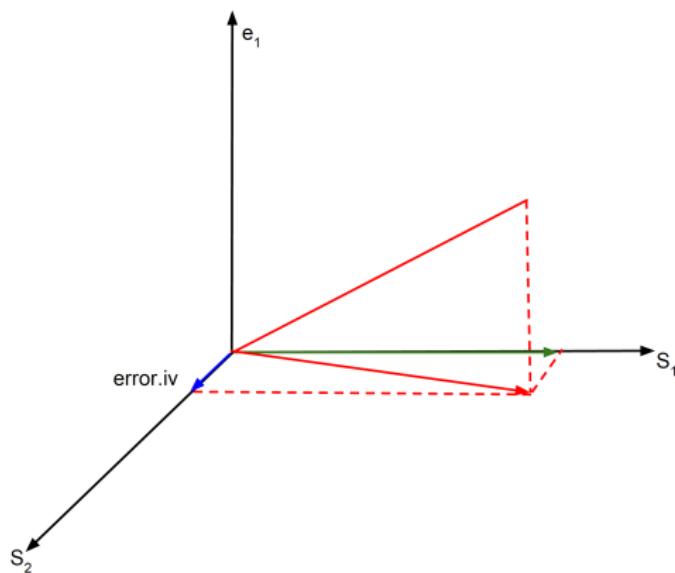
CF: Augmented TSLS

- Define \tilde{d}^2 as the residual of the regression $d^2 \sim e_1$.
- Define $\text{error.iv} = \text{resid}(\tilde{d}^2 \sim x + z + z^2)$.
- $S_1 = \text{span}\{1, x, z, z^2\}$ and $S_2 = \text{span}\{\text{error.iv}\}$.



Theorem 1

The Control Function Estimator with Instruments x, z, z^2 is the same with TSLS with Instruments x, z, z^2 and error.iv.
If error.iv is a valid instrument, CF is more efficient than 2SLS.



Validity and Hausman Test

Define $V_0 = (1, x, z, z^2)$ and $V = (1, x, z, z^2, \text{error}.iv)$ and $W = (1, x, d, d^2)$. Under the conditional homoskedasticity, we define

$$\hat{\eta}_0 = (W^T P_0 W)^{-1} W P_0 Y \quad \text{with} \quad P_0 = V_0 (V_0^T V_0)^{-1} V_0^T$$

$$\hat{\eta} = (W^T P W)^{-1} W P Y \quad \text{with} \quad P = V (V^T V)^{-1} V^T$$

$$C = \frac{\hat{u}^T P \hat{u} - \hat{u}_0^T P_0 \hat{u}_0}{\hat{\sigma}^2} \quad \text{is asymptotically } \chi^2(1)$$

where

$$\hat{u} = y - W \hat{\eta}, \quad \hat{u}_0 = y - W \hat{\eta}_0, \quad \hat{\sigma}^2 = \frac{\hat{u}' \hat{u}}{n}.$$

Hayashi, F. *Econometrics*, Princeton University Press. (2000)

Define the p-value $p = P(\chi^2(1) \geq C)$. **The Level α Pretest Estimator** is defined as

$$\begin{cases} CF & \text{if } p > \alpha \\ TSLS & \text{if } p \leq \alpha \end{cases}$$

Simulation 1

$$y = 1 + x + 10d + 10d^2 + u$$

$$d = 1 + \frac{1}{8}x + \frac{1}{3}z + \frac{1}{8}z^2 + v$$

where $x \sim N(0, 10^2)$, $z \sim N(0, 3^2)$ and

$$\begin{pmatrix} u \\ v \end{pmatrix} \sim N \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 100 & 31 \\ 31 & 10 \end{pmatrix} \right].$$

Simulation 1

	WMSE		NMSE	
	CF	Pretest	CF	Pretest
β_0	0.79	0.83	0.29	0.40
β_1	0.12	0.13	0.03	0.28
β_2	0.04	0.04	0.01	0.28
β_3	0.01	0.01	0.001	0.29

Table: Proportion of Winsorized MSE (WMSE) and Non-winsorized MSE(NMSE) of the estimators, with WMSE/MSE of TSLS as basis, Sample size 10,000 and simulation time is 10,000, pvalue>0.05

Simulation 2

$$y = d + 0.2d^2 + w + u$$

$$d = -1 + 0.2z + 0.3z^2 + v$$

$$w = 0.5v^2 + N(0, 1)$$

where $\begin{pmatrix} u \\ v \end{pmatrix} \sim N \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right]$ and $z \sim N(0, 1)$.

$$\mathbb{E}(w_i + u_i \mid v_i) = 0.5v_i^2 \neq \rho v_i$$

Simulation 2

	Bias of Sample Mean		
	TSLS	CF	Pretest
β_1	$4e^{-6}$	-0.128	$4e^{-6}$
β_2	$-1.6e^{-4}$	0.559	$-1.6e^{-4}$

Table: Proportion of Bias of Sample Mean of the estimators to the true value, Sample size 10,000 and simulation time is 10,000, pvalue>0.05

Simulation 2

	WMSE		NMSE	
	CF	Pretest	CF	Pretest
β_1	6.91	1	6.31	1
β_2	10.14	1	9.24	1

Table: Proportion of Winsorized MSE (WMSE) and Non-winsorized MSE(NMSE) of the estimators, with WMSE/MSE of TSLS as basis.

Take Home Message

- ① Control function = TSLS with an augmented set of IVs
- ② Pretest estimator: combining CF and TSLS

Guo, Z., & Small, D. S. (2016). Control function instrumental variable estimation of nonlinear causal effect models. *Journal of Machine Learning Research*, 17(100), 1-35.

Code is available at

[https://github.com/zijguo/Control-function.](https://github.com/zijguo/Control-function)

Overview of talk

- 1 Endogeneity and Instrumental Variable
- 2 Control Function and TSLS
- 3 Control Function with Possibly Invalid IVs

Binary Outcome and Invalid IVs

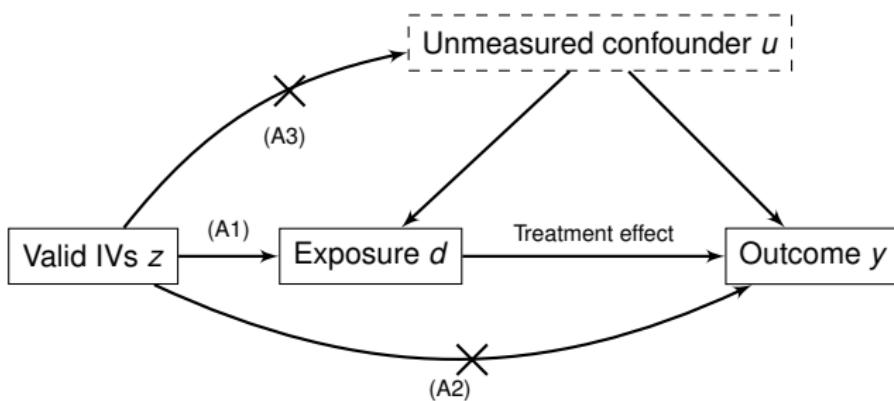


Figure: IV assumptions (A1)-(A3).

Binary Outcome+ Violation of (A2) and (A3).

Model Set-up

Define $w_i = (z_i^\top, x_i^\top)^\top$. Potential outcome model

$$\mathbb{E}[y_i^{(d)} | w_i = w, \mathbf{u}_i = \mathbf{u}] = q(d\beta + w^\top \kappa, u),$$

where $\kappa = (\kappa_z^\top, \kappa_x^\top)^\top$ and $q : \mathbb{R}^2 \rightarrow \mathbb{R}$ is a possibly unknown function.

Define $w_i = (z_i^\top, x_i^\top)^\top$. Potential outcome model

$$\mathbb{E}[y_i^{(d)} | w_i = w, u_i = u] = q(d\beta + w^\top \kappa, u),$$

where $\kappa = (\kappa_z^\top, \kappa_x^\top)^\top$ and $q : \mathbb{R}^2 \rightarrow \mathbb{R}$ is a possibly unknown function.

- Logistic

$$q(d\beta + w^\top \kappa, u) = \frac{\exp(d\beta + w^\top \kappa + u)}{1 + \exp(d\beta + w^\top \kappa + u)}$$

Define $w_i = (z_i^\top, x_i^\top)^\top$. Potential outcome model

$$\mathbb{E}[y_i^{(d)} | w_i = w, u_i = u] = q(d\beta + w^\top \kappa, u),$$

where $\kappa = (\kappa_z^\top, \kappa_x^\top)^\top$ and $q : \mathbb{R}^2 \rightarrow \mathbb{R}$ is a possibly unknown function.

- Logistic

$$q(d\beta + w^\top \kappa, u) = \frac{\exp(d\beta + w^\top \kappa + u)}{1 + \exp(d\beta + w^\top \kappa + u)}$$

- Probit (standard normal u)

$$q(d\beta + w^\top \kappa, u) = \mathbf{1}(d\beta + w^\top \kappa + u > 0)$$

Define $w_i = (z_i^\top, x_i^\top)^\top$. Potential outcome model

$$\mathbb{E}[y_i^{(d)} | w_i = w, u_i = u] = q(d\beta + w^\top \kappa, u),$$

where $\kappa = (\kappa_z^\top, \kappa_x^\top)^\top$ and $q : \mathbb{R}^2 \rightarrow \mathbb{R}$ is a possibly unknown function.

- Logistic

$$q(d\beta + w^\top \kappa, u) = \frac{\exp(d\beta + w^\top \kappa + u)}{1 + \exp(d\beta + w^\top \kappa + u)}$$

- Probit (standard normal u)

$$q(d\beta + w^\top \kappa, u) = \mathbf{1}(d\beta + w^\top \kappa + u > 0)$$

- Continuous outcome models

$$q(d\beta + w^\top \kappa, u) = (d\beta + w^\top \kappa) \cdot u$$

$$\mathbb{E}[y_i^{(d)} | w_i = w, u_i = u] = q(d\beta + w^\top \kappa, u)$$

- q can be unknown.
- u_i and d_i are correlated.
- $\kappa_z \neq 0$ indicates a direct effect!

$$\mathbb{E}[y_i^{(d)} | w_i = w, u_i = u] = q(d\beta + w^\top \kappa, u)$$

- q can be unknown.
- u_i and d_i are correlated.
- $\kappa_z \neq 0$ indicates a direct effect!
- The target causal estimand is CATE

$$\text{CATE}(d, d' | w) := \mathbb{E} \left[y_i^{(d)} - y_i^{(d')} | w_i = w \right],$$

where $d \in \mathbb{R}$ and $d' \in \mathbb{R}$ and $w \in \mathbb{R}^p$.

Potential outcome model and consistency imply

$$\begin{aligned}\mathbb{E}[y_i|d_i = d, w_i = w, u_i = u] &= q(d\beta + w^\top \kappa, u) \\ &= \frac{\exp(d\beta + w^\top \kappa + u)}{1 + \exp(d\beta + w^\top \kappa + u)}\end{aligned}$$

Continuous treatment model

$$d_i = w_i^\top \gamma + v_i, \quad \mathbb{E}[v_i|w_i] = 0,$$

where $\gamma = (\gamma_z^\top, \gamma_x^\top)^\top$ and v_i is the residual term.

Inference for β .

Existing CF Methods

Blundell, R. W. and J. L. Powell (2004). Endogeneity in semiparametric binary response models. *The Review of Economic Studies* 71(3), 655–679.

Rothe, C. (2009). Semiparametric estimation of binary response models with endogenous regressors. *Journal of Econometrics* 153(1), 51–64.

Classical CF Assumptions

- (A1) $\|\gamma_z\|_2 \geq \tau_0 > 0$ for some $\tau_0 > 0$;
- (A2) $\kappa_z = 0$;
- (A3) $f_u(u_i|w_i, v_i) = f_u(u_i|v_i)$ where $w_i = (z_i^\top, x_i^\top)^\top$.

If w_i is independent of (u_i, v_i) , (A3) holds.

Classical CF Assumptions

- (A1) $\|\gamma_z\|_2 \geq \tau_0 > 0$ for some $\tau_0 > 0$;
- (A2) $\kappa_z = 0$;
- (A3) $f_u(u_i|w_i, v_i) = f_u(u_i|v_i)$ where $w_i = (z_i^\top, x_i^\top)^\top$.

If w_i is independent of (u_i, v_i) , (A3) holds.

(A2) and (A3) imply

$$\mathbb{E}[y_i|d_i, w_i, v_i] = \int q(d_i\beta + w_i^\top \kappa, u_i) f_u(u_i|v_i) du_i = g_0(d_i\beta + x_i^\top \kappa_x, v_i)$$

- 1 Double index model.
- 2 The literature is about inference for β .

New Identifiability Conditions

Dimension reduction condition:

$$f_u(u_i | w_i, v_i) = f_u(u_i | w_i^\top \eta, v_i) \quad \text{for some } \eta \in \mathbb{R}^{p \times q}. \quad (1)$$

- $\eta \neq 0$: non-parametric violation of (A3) .
- Focus on $q = 1$

Dimension reduction condition:

$$f_u(u_i | w_i, v_i) = f_u(u_i | w_i^\top \eta, v_i) \quad \text{for some } \eta \in \mathbb{R}^{p \times q}. \quad (1)$$

- $\eta \neq 0$: non-parametric violation of (A3) .
- Focus on $q = 1$

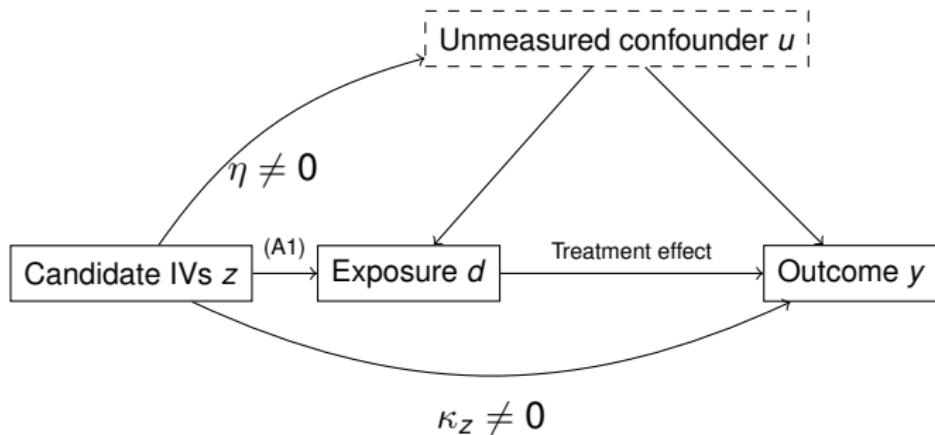
Majority rule: more than half of the relevant IVs are valid.

- set of relevant IVs

$$\mathcal{S} = \{1 \leq j \leq p_z : \gamma_j \neq 0\}.$$

- set of valid IVs

$$\mathcal{V} = \{j \in \mathcal{S} : (\kappa_z)_j = (\eta_z)_j = 0\}.$$



$$\begin{aligned}
 \mathbb{E}[y_i | d_i, w_i, \textcolor{red}{v_i}] &= \int q(d_i \beta + w_i^\top \kappa, u_i) f_u(u_i | w_i^\top \eta, v_i) du_i \\
 &= \textcolor{red}{g^* (d_i \beta + w_i^\top \kappa, w_i^\top \eta, v_i)}
 \end{aligned}$$

- 1 We allow $\kappa_z \neq 0$ and $\eta \neq 0$
- 2 In comparison to $g_0 (d_i \beta + x_i^\top \kappa_x, v_i)$

Identifiability Strategy

Step 1: Reduced Form Estimators

Expressed in the matrix form,

$$\mathbb{E}[y_i|d_i, w_i, v_i] = g^*((d_i, w_i^\top)B^*, v_i) \quad \text{with} \quad B^* = \begin{pmatrix} \beta & 0 \\ \kappa & \eta \end{pmatrix} \in \mathbb{R}^{(p+1) \times 2}.$$

We plugin $d_i = w_i^\top \gamma + v_i$ and obtain

$$\mathbb{E}[y_i|w_i, v_i] = \mathbb{E}[y_i|w_i^\top \Theta^*, v_i] \quad \text{with} \quad \Theta^* = (\beta\gamma + \kappa \quad \eta) \in \mathbb{R}^{p \times 2}.$$

Estimate Θ^* by standard dimension reduction methods.

Step 2: Apply Majority Rule

Identify Θ as a linear transformation of Θ^* :

$$\Theta^* = (\beta\gamma + \kappa \quad \eta) \in \mathbb{R}^{p \times 2}.$$

Define

$$b_m = \text{Median}(\{\Theta_{j,m}/\gamma_j\}_{j \in \mathcal{S}}) \quad \text{for } 1 \leq m \leq 2.$$

where \mathcal{S} denotes the set of relevant IV. We identify B as

$$B = \begin{pmatrix} b_1 & b_2 \\ \Theta_{.,1} - b_1\gamma & \Theta_{.,2} - b_2\gamma \end{pmatrix} \quad (2)$$

Construct B such that

$$\mathbb{E} \left[y_i^{(d)} | w_i = w, v_i = v \right] = g((d, w^\top) B, v)$$

Step 3: partial mean

$$\text{CATE}(d, d' | w) := \mathbb{E} \left[y_i^{(d)} - y_i^{(d')} | w_i = w \right],$$

Identify $\mathbb{E} \left[y_i^{(d)} | w_i = w \right]$ by

$$\int \mathbb{E} \left[y_i^{(d)} | w_i = w, v_i = v \right] f_v(v) dv$$

Average with respect to v_i : $\frac{1}{n} \sum_{i=1}^n g((d, w^\top) B, v_i)$.

Informal Theoretical Results

Under regularity conditions,

$$\frac{n}{\sqrt{V_{\text{CATE}}}} \left(\widehat{\text{CATE}}(d, d'|w) - \text{CATE}(d, d'|w) \right) \rightarrow N(0, 1)$$

and

$$\mathbf{P} \left(c_0 / \sqrt{nh^2} \leq \sqrt{V_{\text{CATE}}} / n \leq C_0 / \sqrt{nh^2} \right) \geq 1 - n^{-c}.$$

- ① Confidence interval is constructed by bootstrap.
- ② Similar to two-dimension non-parametric function!
- ③ Inference for CATE is much more challenging than inference for β .

Real Data: Factor IV

Mouse data set (Bush and Moore 2012).

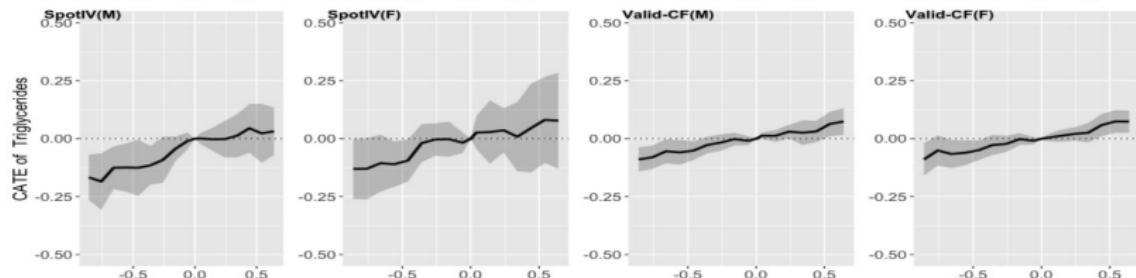
- 10,346 polymorphic genetic markers and 1,269 sample
- outcome: (pre) diabetic v.s. normal
- exposures: HDL, LDL, Triglycerides
- a large number of polymorphic markers
- the high correlation among some polymorphic markers.

Factor IV

- ① Select polymorphic markers which have “not-too-small” marginal associations with HDL
- ② Run PCA and use leading PC as the candidate IVs.
- ③ HDL (24 IVs); LDL (18 IVs); Triglycerides (14 IVs)

Real Data Results

The constructed 95% CIs for $\text{CATE}(d, 0|w_M)$ and $\text{CATE}(d, 0|w_F)$ with Triglycerides exposures at different levels of d .



Take Home Message

- ① New ways to model invalid IVs.
- ② New identifiability conditions for control function.
- ③ Confidence interval construction for the treatment effect.

Li, S., & Guo, Z. (2020). Causal Inference for Nonlinear Outcome Models with Possibly Invalid Instrumental Variables. *arXiv preprint arXiv:2010.09922*.

Code is available at <https://github.com/saili0103/SpotIV>.

Acknowledgement

Special thanks to

- Collaborators: Dylan Small, Tony Cai, Hyunseung Kang and Sai Li
- Package Contributors: Taehyeon Koo, Wei Yuan and Yunjiao Bai

Acknowledgement to NSF and NIH for fundings.

Thank you!