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Endogeneity and Instrumental Variable

Exposure d Outcome y
Treatment effect

Unmeasured confounder u

Valid IVs z
(A1)

(A2)

(A3)

Figure: IV assumptions (A1)-(A3).

(A1) association with the treatment;
(A2) no direct effect on the outcome;
(A3) ignorability.

Zijian Guo (Rutgers Statistics) Instrumental Variable Analysis February 25, 2021 4 / 35



Overview of talk

1 Endogeneity and Instrumental Variable

2 Control Function and TSLS

3 Control Function with Possibly Invalid IVs

Zijian Guo (Rutgers Statistics) Instrumental Variable Analysis February 25, 2021 5 / 35



Models

Outcome model

yi = β0 + diβ1 + d2
i β2 + xᵀ

i ψ + ui , for 1 ≤ i ≤ n

Treatment model

di = ziγ1 + z2
i γ2 + xᵀ

i φ+ vi for 1 ≤ i ≤ n

baseline covariate xi

ui is correlated with vi and hence di

The result can be extended to known h

yi = h(di) + xᵀ
i ψ + ui
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IV and TSLS

1 Predict d by d̂
lm(d ∼ z + z2 + x)

Predict d2 by d̂2

lm(d2 ∼ z + z2 + x)

2 Run a second stage regression

lm(y ∼ d̂ + d̂2 + x)

Estimate β1 and β2 by coefficients in front of d̂ and d̂2.
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IV and Control Function

1 Predict d by d̂
lm(d ∼ z + z2 + x)

and obtain the residual e1 = d − d̂ .
2 Run a second stage regression

lm(Y ∼ d + d2 + x + e1)

Estimate β1 and β2 by coefficients in front of d and d2.

e1 is a surrogate for part of the unmeasured confounder in d .
Two Stage Residual Inclusion
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Intuition and Assumption

If v is known, then

E(yi | di , xi ,vi) = β0 + β1di + β2d2
i + xᵀ

i ψ + E(ui | di , xi , vi)

= β0 + β1di + β2d2
i + xᵀ

i ψ + E(ui | zi , xi , vi)

= β0 + β1di + β2d2
i + xᵀ

i ψ + E(ui | vi)

= β0 + β1di + β2d2
i + xᵀ

i ψ + ρvi

Assumptions
1 (ui , vi) are independent of zi , xi

2 E(ui | vi) = ρvi

Imbens, W.G and Wooldridge, M.J. Control Function and Related Methods,
Lecture Notes on course "What’s New in Econometrics ", NBER (2007).

If the outcome model is linear in d , then TSLS=CF.
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CF: Augmented TSLS

Define d̃2 as the residual of the regression d2 ∼ e1.

Define error .iv = resid(d̃2 ∼ x + z + z2).

S1 = span{1, x , z, z2} and S2 = span{error .iv}.
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CF: Augmented TSLS

Theorem 1
The Control Function Estimator with Instruments x , z, z2 is the same
with TSLS with Instruments x , z, z2 and error .iv .
If error .iv is a valid instrument, CF is more efficient than 2SLS.
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Validity and Hausman Test

Define V0 = (1, x , z, z2) and V = (1, x , z, z2,error .iv) and
W = (1, x ,d ,d2). Under the conditional homoskedasticity, we define

η̂0 = (W ᵀP0W )−1WP0Y with P0 = V0(V ᵀ
0 V0)−1V ᵀ

0

η̂ = (W ᵀPW )−1WPY with P = V (V ᵀV )−1V ᵀ

C =
ûᵀPû − ûᵀ

0P0û0

σ̂2 is asymptotically χ2(1)

where

û = y −W η̂, û0 = y −W η̂0, σ̂
2 =

û′û
n
.

Hayashi,F. Econometrics, Princeton University Press. (2000)
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Pretest Estimator

Define the p-value p = P(χ2(1) ≥ C). The Level α Pretest Estimator
is defined as {

CF if p > α
TSLS if p ≤ α
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Simulation 1

y = 1 + x + 10d + 10d2 + u

d = 1 +
1
8

x +
1
3

z +
1
8

z2 + v

where x ∼ N(0,102), z ∼ N(0,32) and(
u
v

)
∼ N

[(
0
0

)
,

(
100 31
31 10

)]
.
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Simulation 1

WMSE NMSE
CF Pretest CF Pretest

β0 0.79 0.83 0.29 0.40
β1 0.12 0.13 0.03 0.28
β2 0.04 0.04 0.01 0.28
β3 0.01 0.01 0.001 0.29

Table: Proportion of Winsorized MSE (WMSE) and Non-winsorized
MSE(NMSE) of the estimators, with WMSE/MSE of TSLS as basis, Sample
size 10,000 and simulation time is 10,000, pvalue>0.05
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Simulation 2

y = d + 0.2d2 + w + u

d = −1 + 0.2z + 0.3z2 + v

w = 0.5v2 + N(0,1)

where
(

u
v

)
∼ N

[(
0
0

)
,

(
1 0
0 1

)]
and z ∼ N(0,1).

E(wi + ui | vi) = 0.5v2
i 6= ρvi
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Simulation 2

Bias of Sample Mean
TSLS CF Pretest

β1 4e−6 -0.128 4e−6

β2 −1.6e−4 0.559 −1.6e−4

Table: Proportion of Bias of Sample Mean of the estimators to the true value,
Sample size 10,000 and simulation time is 10,000, pvalue>0.05
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Simulation 2

WMSE NMSE
CF Pretest CF Pretest

β1 6.91 1 6.31 1
β2 10.14 1 9.24 1

Table: Proportion of Winsorized MSE (WMSE) and Non-winsorized
MSE(NMSE) of the estimators, with WMSE/MSE of TSLS as basis.
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Take Home Message

1 Control function = TSLS with an augmented set of IVs
2 Pretest estimator: combining CF and TSLS

Guo, Z., & Small, D. S. (2016). Control function instrumental variable
estimation of nonlinear causal effect models. Journal of Machine Learning
Research, 17(100), 1-35.

Code is available at
https://github.com/zijguo/Control-function.
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Binary Outcome and Invalid IVs

Exposure d Outcome y
Treatment effect

Unmeasured confounder u

Valid IVs z
(A1)

(A2)

(A3)

Figure: IV assumptions (A1)-(A3).

Binary Outcome+ Violation of (A2) and (A3).
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Model Set-up
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Define wi = (zᵀ
i , x

ᵀ
i )ᵀ. Potential outcome model

E[y (d)
i |wi = w ,ui = u] = q (dβ + wᵀκ,u) ,

where κ = (κᵀz , κ
ᵀ
x )ᵀ and q : R2 → R is a possibly unknown function.

Logistic

q(dβ + wᵀκ,u) =
exp(dβ + wᵀκ+ u)

1 + exp(dβ + wᵀκ+ u)

Probit (standard normal u)

q(dβ + wᵀκ,u) = 1(dβ + wᵀκ+ u > 0)

Continuous outcome models

q (dβ + wᵀκ,u) = (dβ + wᵀκ) · u
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E[y (d)
i |wi = w ,ui = u] = q (dβ + wᵀκ,u)

q can be unknown.
ui and di are correlated.
κz 6= 0 indicates a direct effect!

The target causal estimand is CATE

CATE(d ,d ′|w) := E
[
y (d)

i − y (d ′)
i |wi = w

]
,

where d ∈ R and d ′ ∈ R and w ∈ Rp.
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Potential outcome model and consistency imply

E[yi |di = d ,wi = w ,ui = u] = q (dβ + wᵀκ,u)

=
exp(dβ + wᵀκ+ u)

1 + exp(dβ + wᵀκ+ u)

Continuous treatment model

di = wᵀ
i γ + vi , E[vi |wi ] = 0,

where γ = (γᵀz , γ
ᵀ
x )ᵀ and vi is the residual term.

Inference for β.
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Existing CF Methods

Blundell, R. W. and J. L. Powell (2004). Endogeneity in semiparametric binary
response models. The Review of Economic Studies 71(3), 655–679.

Rothe, C. (2009). Semiparametric estimation of binary response models with
endogenous regressors. Journal of Econometrics 153(1), 51–64.
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Literature results

Classical CF Assumptions
(A1) ‖γz‖2 ≥ τ0 > 0 for some τ0 > 0;
(A2) κz = 0;
(A3) fu(ui |wi , vi) = fu(ui |vi) where wi = (zᵀ

i , x
ᵀ
i )ᵀ.

If wi is independent of (ui , vi), (A3) holds.

(A2) and (A3) imply

E[yi |di ,wi , vi ] =

∫
q(diβ + wᵀ

i κ,ui)fu(ui |vi)dui = g0
(
diβ + xᵀ

i κx , vi
)

1 Double index model.
2 The literature is about inference for β.
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New Identifiability Conditions
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Dimension reduction condition:

fu(ui |wi , vi) = fu(ui |wᵀ
i η, vi) for some η ∈ Rp×q. (1)

η 6= 0: non-parametric violation of (A3) .
Focus on q = 1

Majority rule: more than half of the relevant IVs are valid.
set of relevant IVs

S = {1 ≤ j ≤ pz : γj 6= 0}.

set of valid IVs

V = {j ∈ S : (κz)j = (ηz)j = 0}.
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Exposure d Outcome y
Treatment effect

Unmeasured confounder u

Candidate IVs z
(A1)

κz 6= 0

η 6= 0

E[yi |di ,wi , vi ] =

∫
q(diβ + wᵀ

i κ,ui)fu(ui |wᵀ
i η, vi)dui

= g∗
(
diβ + wᵀ

i κ,w
ᵀ
i η, vi

)
1 We allow κz 6= 0 and η 6= 0
2 In comparison to g0

(
diβ + xᵀ

i κx , vi
)
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Identifiability Strategy
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Step 1: Reduced Form Estimators

Expressed in the matrix form,

E[yi |di ,wi , vi ] = g∗((di ,w
ᵀ
i )B∗, vi) with B∗ =

(
β 0
κ η

)
∈ R(p+1)×2.

We plugin di = wᵀ
i γ + vi and obtain

E[yi |wi , vi ] = E[yi |wᵀ
i Θ∗, vi ] with Θ∗ =

(
βγ + κ η

)
∈ Rp×2.

Estimate Θ∗ by standard dimension reduction methods.
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Step 2: Apply Majority Rule

Identify Θ as a linear transformation of Θ∗ :

Θ∗ =
(
βγ + κ η

)
∈ Rp×2.

Define
bm = Median({Θj,m/γj}j∈S) for 1 ≤ m ≤ 2.

where S denotes the set of relevant IV. We identify B as

B =

(
b1 b2

Θ.,1 − b1γ Θ.,2 − b2γ

)
(2)

Construct B such that

E
[
y (d)

i |wi = w , vi = v
]

= g ((d ,wᵀ)B, v)
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Step 3: partial mean

CATE(d ,d ′|w) := E
[
y (d)

i − y (d ′)
i |wi = w

]
,

Identify E
[
y (d)

i |wi = w
]

by∫
E
[
y (d)

i |wi = w , vi = v
]

fv (v)dv

Average with respect to vi : 1
n
∑n

i=1 g((d ,wᵀ)B, vi).
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Informal Theoretical Results

Under regularity conditions,

n√
VCATE

(
ĈATE(d ,d ′|w)− CATE(d ,d ′|w)

)
→ N(0,1)

and
P
(

c0/
√

nh2 ≤
√

VCATE/n ≤ C0/
√

nh2
)
≥ 1− n−c .

1 Confidence interval is constructed by bootstrap.
2 Similar to two-dimension non-parametric function!
3 Inference for CATE is much more challenging than inference for β.
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Real Data: Factor IV

Mouse data set (Bush and Moore 2012).
10,346 polymorphic genetic markers and 1,269 sample
outcome: (pre) diabetic v.s. normal
exposures: HDL, LDL, Triglycerides
a large number of polymorphic markers
the high correlation among some polymorphic markers.

Factor IV
1 Select polymorphic markers which have “not-too-small” marginal

associations with HDL
2 Run PCA and use leading PC as the candidate IVs.
3 HDL (24 IVs); LDL (18 IVs); Triglycerides (14 IVs)
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Real Data Results

The constructed 95% CIs for CATE(d ,0|wM) and CATE(d ,0|wF ) with
Triglycerides exposures at different levels of d .
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Take Home Message

1 New ways to model invalid IVs.
2 New identifiability conditions for control function.
3 Confidence interval construction for the treatment effect.

Li, S., & Guo, Z. (2020). Causal Inference for Nonlinear Outcome Models with
Possibly Invalid Instrumental Variables. arXiv preprint arXiv:2010.09922.

Code is available at https://github.com/saili0103/SpotIV.
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